### EE641 - Laboratório de Eletrônica

# Circuito de Detector de Cruzamento deZero e Disparo de Tiristores

Prof. J. A. SIQUEIRA DIAS - DEMIC/FEEC/UNICAMP

2° Semestre de 2007

## 1 Objetivo

Finalmente, devemos construir um circuito que acione os tiristores que irão ligar o aquecedor, normalmente constituído por um mais resistores de alta potência (desde alguns kW até centenas de kW, dependendo do sistema a ser aquecido).

Para proporcionar o acionamento dos tiristores sem gerar muita interferência por irradiação eletromagnética e sem causar um di/dt muito alto nos tiristores, é necessário que o acionamento seja feito quando a tensão da rede esteja muito próxima de zero. Para isso, vamos usar um circuito que gere um pequeno pulso quando a rede passe muito próxima do zero. Em um projeto comercial, a rede seria obtida através do secundário do transformador empregado no projeto da fonte de  $\pm 12$  V que alimenta todos os blocos do controlador. Como não iremos projetar a fonte (estamos usando a fonte de  $\pm 12$  V do Lab), vamos montar um circuito separado, com um transformador, apenas para podermos gerar os pulsos sincronizados com o zero da rede.

### 2 Detector de cruzamento de zero

Embora existam CIs que implementem a detecção de cruzamento de zero, optamos por fazer um circuito apenas com transistores e resistores, da mesma forma como seria feito o projeto de um circuito integrado que executasse esta função. Na figura 1 temos o circuito que iremos usar.

O funcionamento deste circuito é baseado na operação do par diferencial  $Q_1$  e  $Q_2$ , que possui uma carga resistiva formada pelos resistores  $R_{19}$  e  $R_{20}$  e é polarizado por uma fonte de corrente, construída com o transistor  $Q_3$ . O par  $Q_3 - Q_4$  é um espelho de corrente, de forma que a corrente em  $Q_3$  é igual à de  $Q_4$ , se desprezarmos os erros devido ao  $\beta$  finito e à diferença de  $V_{CE}$  entre  $Q_3$  e  $Q_4$ . A corrente em  $Q_4$  é definida pelo resistor  $R_{21}$ , e sugerimos que ela seja da ordem de 2 mA, para que cada um dos transistores do par opere com cerca de 1 mA quando estiverem conduzindo igualmente.

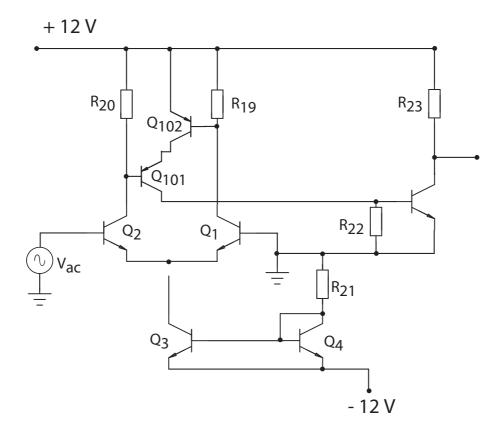



Figura 1: Circuito de detector de cruzamento de zero

Se escrevermos a relação entre as correntes de coletor de Q1 e  $Q_2$  em função de suas tensões  $V_{BE}$ , facilmente chegamos à expressão:

$$V_{BE_1} - V_{BE_2} = \frac{kT}{q} ln(\frac{IC_{Q_1}}{IC_{Q_2}})$$
 (1)

Por esta equação, se fizermos a tensão  $V_{BE_1}-V_{BE_2}=76$  mV, vemos que a corrente no transistor  $Q_1$  será aproximadamente 19 vezes maior do que a no transistor  $Q_2$ . Ou seja,  $Q_1$  conduz 95% da corrente de alimentação do par  $(I_{C_{Q3}})$ , enquanto que  $Q_2$  conduz, obviamente, 5% dessa corrente de alimentação. Isso indica que  $Q_1$  está quase conduzindo toda a corrente do par, e que  $Q_2$  já está quase cortado. Apenas para dar um exemplo numérico, vemos que quando a tensão na base de  $Q_1$  estiver apenas 76 mV acima do zero (a base de  $Q_4$  está em zero), as correntes em  $Q_1$  e  $Q_2$  serão, aproximadamente,  $I_{CQ_1}=1.9$  mA e  $I_{CQ_2}=0.1$  mA.

Se os resistores  $R_{19}$  e  $R_{20}$  forem iguais, as quedas de tensão sobre estes resistores terão a mesma relação que as correntes que passam sobre eles, e portanto a tensão sobre  $R_{19}$  será 19 vezes a tensão sobre  $R_{20}$ .

Logo, se projetarmos adequadamente os resistores  $R_{19}$  e  $R_{20}$ , é fácil fazer com que nestas condições ( $V_{R_{19}}=19\times V_{R_{20}}$ ), somente o transistor  $Q_{102}$  tenha tensão  $V_{BE}$  suficiente para conduzir, que a tensão  $V_{BE}$  no transistor  $Q_{101}$  não seja suficiente para ele conduzir. Como um transistor na condução tem a tensão  $V_{BE}\simeq 600$  mV, se  $R_{19}$  é calculado para fazer com que a tensão  $V_{BE_{19}}=600$  mV, a tensão sobre  $R_{20}$  será aproximadamente 19 vezes

menor, ou seja,  $V_{BE_{20}} \simeq 30$  mV.

Por enquanto analisamos apenas as tensões  $V_{BE}$  necessárias para conduzir ou cortar os transistores  $Q_{101}-Q_{102}$ . No entanto, ao verificarmos a ligação entre os dois transistores, vemos que eles estão em uma configuração cascode, onde só é possivel que um dos transistores conduza se o outro também estiver conduzindo. Dessa forma, é possível calcular os valores de  $R_{19}$  e  $R_{20}$  para que, por exemplo, estes dois transistores só estejam conduzindo quando a tensão de entrada estiver muito próxima do zero.

No nosso caso, os valores de  $R_19$  e  $R_20$  devem ser calculados para que estes transistores só conduzam quando a tensão de entrada estiver entre +50 mV e -50 mV. A corrente de saída destes transistores é jogada sobre o resistor  $R_{22}$ , de forma que durante o breve intervalo de tempo em que os dois transistores conduzem, a tensão sobre  $R_{22}$  sobe e faz com que o transistor  $Q_5$  conduza. Com  $Q_5$  conduzindo, o valor de  $R_{23}$  deve ser calculado para que ele vá para a região de saturação, e fique em aproximadamente 100 mV ( $VCE_{sat}$ ) enquanto a rede está entre +50 mV e -50 mV. Como fora desta faixa de tensão de entrada  $Q_5$  vai estar cortado, a tensão no seu coletor vai ter uma forma de onda como a indicada na Fig. 2.

Na implementação do circuito vamos utilizar um "array" de transistores integrados (o LM 3046) para os transistores  $Q_1 - Q_5$ . Lembre que o substrato do LM 3046 deve ser ligado ao potencial mais negativo do CI, logo o emissor de  $Q_3$  (ou de  $Q_4$ ) deve ser o pino 13 do CI. Para os transistores PNP, como não temos transistores integrados, usaremos transistores PNP discretos, por exemplo o BC 556. Mesmo com o descasamento natural entre componentes discretos, devido à sua configuração robusta, o circuito deve funcionar corretamente.

### 3 Monoestável e oscilador

Normalmente, para o disparo dos tiristores, utiliza-se um trem de pulsos de alta frequência, porém com um duty-cycle pequeno, para podermos dar pulsos de alta corrente no gate dos tiristores, garantindo que eles disparem, sem no entanto dissipar muita potência nos gates, evitando que eles possam vir a queimar.

Devemos providenciar dois circuitos:

- um circuito que gere o trem de pulsos de alta freqüência e baixo duty-cycle;
- um gerador de pulso acionado pela borda de descida do detetor de cruzamento, do tipo monoestável, para fazer com que o trem de pulsos só esteja disponível para os tiristores durante um pequeno período do ciclo da rede.

Com isto, teremos um trem de pulsos em alta freqüência, iniciando-se próximo do ponto onde a rede passa pelo zero, e com a duração que nós desejarmos (normalmente 1 a 2 ms são suficientes para garantir o disparo dos tiristores). O diagrama de tempos da Fig. 2 mostra todos os sinais descritos anteriormente.

Para a obtenção dos sinais de alta freqüência e baixo duty-cycle, usaremos um circuito oscilador baseado em carga e descarga de um capacitor. O pulso de 1 ms será gerado por um circuito integrado comercial bastante conhecido, o LM555.

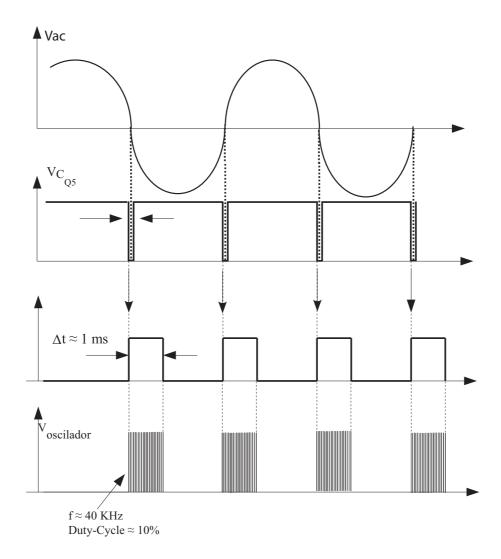



Figura 2: Sinais necessários para disparo dos tiristores

O circuito do monoestável, apresentado na Figura 3, é bem simples e fácil de ser entendido. Toda vez que aplicamos um pulso de descida no trigger (pino 2 do CI 555) que atinja valores menores do que Vcc/3, os comparadores internos do CI 555 geram na saída (pino 3) um pulso de duração igual a  $T=1.1R_{24}C_2$ .

Portanto, para ajustarmos o tempo do monoestável em aproximadamente 1 ms, basta calcularmos um conjunto  $R_{24}$  e  $C_2$ , usando a equação acima. É interessante usarmos valores baixos para o capacitor  $C_2$ , algo em torno de 10 nF, para economizar nos valores dos componentes do projeto.

Na Figura 4 temos o circuito que será utilizado para gerar a forma de onda do trem de pulsos. O circuito é um comparador com histerese, dotado de uma realimentação positiva. Os transistores  $Q_6$  e  $Q_7$  formam um par diferencial, alimentado por uma fonte de corrente  $(Q_8)$ , que tem origem em um espelho de corrente formado por  $Q_8 - Q_10$ . A tensão de saída no coletor de  $Q_6$  é passada por um seguidor de emissor  $(Q_9)$ , dividida pelo divisor resistivo  $R_a$  e  $R_b$  e injetada na base de  $Q_7$ , criando uma realimentação positiva e determinando o valor da histerese. A saída de tensão no coletor de  $Q_7$  é aplicada, através de um resistor, ao transistor  $Q_{103}$ , que funcionará como fonte

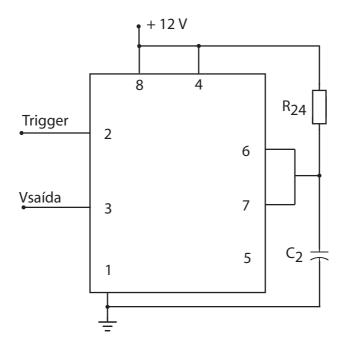



Figura 3: Circuito básico do CI 555 operando como monoestável

de corrente para carregar o conjunto RC formado por  $R_x, C_x$ . A tensão sobre o capacitor  $C_x$  é aplicada na entrada do comparador. Portanto, o capacitor  $C_x$  carrega através de  $Q_{103}$  enquanto  $Q_7$  conduz, e quando a sua tensão aumenta e faz com que  $Q_6$  conduza e  $Q_7$  corte, ele descarrega através do resistor  $R_x$ .

A tensão de saída do oscilador é obtida invertendo a tensão do coletor de  $Q_7$ , o que é feito pelo transistor  $Q_{104}$ . Como o oscilador só deve gerar os pulsos que irão disparar o tiristor durante o tempo em que o monoestável LM555 está ligado, usamos a própria saída do LM555 (pino 3) como alimentação do circuito do oscilador.

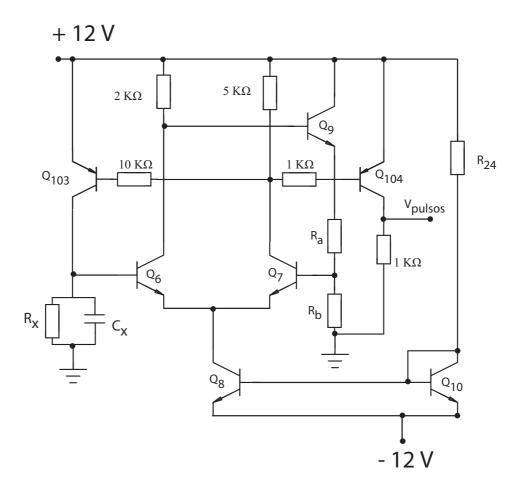



Figura 4: Circuito do oscilador de 40 KHz com duty cycle de 10%.