A Novel Optical Switching Architecture for Metropolitan Photonic Networks with a brief review of Photonic Switching in Brasil

Felipe Rudge Barbosa
Laboratório de Tecnologia Fotônica
DSIF – FEEC – Unicamp
Agenda

- What is photonic switching
- Brief historical perspective
- Experiments
- Models & simulations
- Conclusion
what is *photonic switching*?

- Dynamic routing of network traffic in optical networks, without actually leaving the optical domain;
- The time spans of the switching process determine whether it is:
 - Optical packet (OPS) => 10 µs ;
 - Optical burst (OBS) => 100 µs ;
 - Optical circuit (OCS) => 10 ms ;
- OCS applied at WDM trunk/long-haul or metro-core networks;
- OPS & OBS are dynamic processes, very attractive for application in metro-access networks .
Introduction

- Photonic Switching Networks & WDM Networks
 - optical packets (OPS) as a traffic solution for limited area networks high granularity, availability & flexibility;
 - possibility of aggregation in optical burst switching (OBS);
 - WDM networks supporting backbone traffic (OCS);
Metro-access network: *add-drop traffic*

Optical Packet Switching – Application

Fibre everywhere...

FTTB/C
fiber to building or curb

FFTA
fiber to area

Optical Packet Switching

Optical Node

Nó k

Nó i

Nó j

Add/drop optical packet

Add/drop optical packet

Fibras simples
Fibras duplas
Historical perspective

- **first project sponsored by Ericsson AB**
 - Through Ericsson do Brasil = OCS & OBS at CPqD and Unicamp; Nov.2000-Nov.2002 [total budget ~U$1.5mi]
 - 02 indep. Projects: team and labs;

- **second project sponsored by Funttel (MinCom)**
 - At CPqD -- 2002-2003, (some overlap)
 - OCS was adopted by Giga Project
 - OPS was direct funding [total budget ~R$600 k]

- **third project sponsored by Funttel**
 - At CPqD (direct funding...) 2004-2006

\[New \text{ Federal Govt. in Jan 2003. Revision of Funtel in late 2004.}\]
Experiments
Optical Packet Switching – Characteristics

Manhattan St.
2x2 mesh topology for metro-access netwk

- Frequency Header Optical packets:
 - simple & fast header recognition
 - fast switching (~µs) and low latency
 - asynchronous operation
 - RF in-band low frequency header (1-20 MHz)
 - high-capacity digital payload, transparent to rate & format (1-10 Gb/s)
 - readily available components

packet traffic simulations show that bufferless optical mesh networks have better throughput than ring or star.

FH Opt Pkt

τp=2-6µs (typ.)
Optical Packet Switching & Routing

Node k

In 1 → Optical Switch → Out 1

In 2 → Optical Switch → Out 2

Drop

Header Recognition → Decisions & Actions → Add

Local User

Requirements: **Golden Rules**

- ✓ no buffering in the optical layer;
- ✓ optical switch is blocked when a packet is present;
- ✓ a packet can be deflected but not cut or lost;
- ✓ switching operation is packet-by-packet
Optical Packet Switching – Experiments 1

Experimental Set-up (drop function; 3 freqs.)

- LASER
- Polarization control
- EDFA
- EOM
- Filtro Óptico
- Optical delay line
- Acousto-optic switch 1
- Opt Tap
- Acousto-optic switch 2
- Digital Pattern Generator

Packet generation:

Packet detection & routing:

HRC response (rise & fall times) is 40 ns
Acousto-optic switch response is ~2 µs;
Optical switching (rise & fall times) is ~90 ns;
Optical Packet Switching – Results 1

Experimental \(\text{drop function; 3 freqs.}\)

- **Drop f_1**
 - OptSw1
 - outport D

- **Follow f_3**
 - OptSw2
 - outport C

- **Follow All**
 - both Opt Sws \textit{On}

- **Optical signal at tap**
- **Optical signal at output**

- **Drop f_2**
 - OptSw2
 - outport D

- **Optical signal at tap**
- **Optical signal at output**

- **Follow f_3**
 - both Opt Sws \textit{On}

- **Follow All**
 - both Opt Sws \textit{Off}

The Golden Rules work!!
Experimental Set-up (deflection routing; 2 freqs.)

- LASER
- polariz.
- control
- EOM
- Filtro Optico
- Digital Pattern Generator
- Optical Switch
- f1, f2, f3
- HRC
- Opt Rx
- OR
- NOR
- J, K
- Clk
- LDC
- Digital Oscilloscope (20 GS)
Experimental (*deflection routing; 2 freqs.*)

Control circuits HRC and LDC **on**

Control circuits HRC and LDC **off**

The Golden Rules still work!!
Experimental Set-up (deflection routing and drop; 3 freqs.)

- Packet generation
- Packet detection, deflection & routing

- LASER
- Polarization control
- EDFA
- EOM
- Optical Filtre
- Digital Pattern Generator
- Optical Switch
- Opt Rx
- HRC
- LDC
- Electrical
- Digital Oscilloscope
- (20 GS)
Optical Packet Switching – Results 3

Experiments (deflection routing, 2 freqs.; and drop 1 freq.)

Opt Sw 1 - HRC & LDC on
Opt Sw 2 - HRC off

Opt Sw 1 - HRC & LDC on
Opt Sw 2 - HRC on (drop)
Publications

Patents

- Ericsson – 2002; spread header solution
 - FRBarbosa, ACSachs, MTFurtado;
- CPqD – 2004; field-header solution
 - FRBarbosa, ACSachs, LPezzolo.
Simulations
packet traffic simulations show that bufferless optical mesh networks have better throughput than ring (or star).
Ring Topology
Anel 16 nós
Conditions:
- Deflection routing
- No optical buffers
- Optical packets block optical switches;
- Single packet buffering at node ingress
Modelo para cálculo de vazão e atraso

Manhattan street (9 nodes)

⇒ Traffic originates at any node and arrives at node 1;
=> Any other node is equivalent.

Matriz de Tráfego:

Traffic Analysis

Network capacity
(aggregate throughput)

\[C = \frac{2 \cdot N \cdot S}{H} \]

Node user capacity

Total

\[R = \frac{C}{N \cdot (N - 1)} \]

Effective

\[R_e = R \cdot L \]

Packet loss fraction

\[PLF = \frac{p}{p + r} \]

\(p = \) packets sent
\(r = \) packets received

\(L = 0-100 \% \) link usage
Network throughput

![Network throughput graph](image)

- Manhattan Street
- Anel

Links with 1 Gb/s & 10 km

OBS.: Anel de 4 nós e MS de 4 nós são a mesma topologia
NS Simulation Scenario

- MS topology with 16 nodes
- Bandwidth of 2.5 Gb/s
- Packet size of 650 bytes
- Optical links length of 2 km (10 µs)
- UDP protocol in the transport layer to avoid packet retransmission
- CPVI traffic
- These simulations were performed using Network Simulator (NS-2)
Results

Performance comparison of a MS-16 network with –
deflection routing (DR) and
without deflection routing (NDR)

=> Notice that for ntwk loads above 40%,
everything is lost anyway.
Results (2)

Performance comparison of a MS-16 network with deflection routing and single packet optical buffer.
Summary Simulation

- Mesh architecture demonstrated to provide better and easier network performance;
- Natural matching to the physical layer of fiber radio networks;
- Modified Manhattan Street topology to avoid congestion and improve the overall capacity of the optical access network.
- Analytic Simulation with excellent results and efficient timing!
- Results compatible with experiments;
- Simtime “minutes”; SW -- MatLab (vectors & matrices) and Origin graphs
Publications

Optical Burst Switching

Client Network

IP, Ethernet
or IP/MPLS

Optical Nodes

Other client network

IP, Ethernet
or IP/MPLS
Optical Node Architecture

a bidirectional diagram

Client IP Netwk

Router

Control Plane

Operação e controle

Burst Assembler

Hardware Proprietary

Operação e controle

λ_{data}

Sinal do plano controle

Plano controle

λ_{cont}

FDL

Photonic Switching
- Optical packet switching Ring network operating in burst mode
- Electronic Buffering at client side, *not* at optical ntwk layer;
- controlled by the use of tokens issued by the control plane;
- Fast switching process (tens µs) based on very fast (tens ns) optical (photonic) switching architecture;
- Ethernet compatible, transparent to rate; moderately opaque.
To summarize:

- Solutions for optimized transport in Innovative Optical Networks, based on OPS, OBS (and OCS) have been proposed and demonstrated;
- All are transparent to rate & format (within reasonable limits...)
- Optical bufferless node architectures have been implemented, with add-drop functionalities, based on fast switching times (<2 µs), and very low network latency;
- Optical packets have a frequency header and a high-capacity digital payload;
- Optical bursts are controlled by a controlplane, and share fast OPS;
- OCS is controlled by (different) controlplane and use “slow” WDM optical switches;
- Optical grade transmission allows for BER<10^{-12} and node links 20km; multi-hop deflection paths in excess of 60km.

&...
Photonic Switching – Conclusion 2/2

Last, but not least …

- WDM as ‘longitudinal slicing’ of fibers; Optical Packets & Bursts as ‘transverse slicing’…
- Increase of granularity in transparent WDM networks, with the resource of optical packets (single & burst);
- More effective use of available bandwidth; reduced latency and increased network throughput; ($$, ROI, user QoS)
- Application in Optical Metro-Access Networks: Techno-economic appeal: attractive cost p/ bit through
 - reduction of equipment in the optical network,
 - simple infra-e, and high reliability.
- Mesh topologies required in most cases.
Photonic Switching – Major players

Felipe Rudge Barbosa
Edson Moschim
Luis Bonani
Antonio C. Sachs
Decio Maia Jr.
Leonardo Pezzolo
Marcos Salvador
Eduardo Mobilon
Mario Furtado
Alberto Paradisi
Obrigado!

Thanks for coming!

Felipe Rudge
Rudge@dsif.unicamp.br
tel.: +55(19) 3788-3766

Não sou conformista.
O Homem só não consegue
o que não deseja.

Zeferino Vaz

foundation year = 1969