

Noções básicas de Spice

Disciplina EE640 PED Adriano Ricardo

 É um simulador de circuitos poderoso que permite a análise de sinais elétricos sem a necessidade da implementação física dos mesmos. Auxiliando assim no de projetos em eletrônica de forma barata e rápida.

UNICAME

• Esta aula visa apresentar a interface do programa e familiarizar o estudante com a ferramenta. Mais detalhes do programa podem ser encontrados nos materiais extras no fim desta apresentação.

Instalação no Windows 7

UNICAMP

- A fim de evitar problemas de execução do programa no Windows 7, alguns passos deverão ser feitos durante a instalação do software.
- Primeiramente antes abrir o arquivo Setup.exe, clique com o botão direito e vá em Propriedades – Guia Compatibilidade.
- Mude sua compatibilidade para Windows XP e marque Executar este programa como administrador.

Instalação no Windows 7

UNICAMP

- Como precaução, antes de abrir a instalação, desative seu anti vírus.
- IMPORTANTE: Abra a instalação e lembre-se de marcar durante ela as opções Capture e Schematics.

Instalação	no Windows 7
Select Schematic Editors	
	Choose the Schematic Editor(s) you would like to install. Capture Schematics Once you have selected the appropriate installation option(s), click Next to continue. Click Cancel to exit.

Instalação no Windows 7

UNICAMP

- Após o fim da instalação, entre na pasta em que o programa foi instalado (geralmente é C:\Program Files\OrCAD_Demo\Pspice) e pesquise todos os arquivos com extensão .exe.
- Vá nas Propriedades de cada um deles e mude a Compatibilidade e peça para executar como Administrador, como foi feito anteriormente no Setup.exe.
- Após esses passos seu software rodará de forma perfeita no Win 7.

PSpice Schematics - [Schematic1 p.1] 😫 File Edit Draw Navigate View Options Analysis Tools Markers Window Help GND_EARTH X 2 $\frac{1}{2}$ Get New Part 0

Exemplo 1 - Diodo

• Procure pelo diodo com o nome MBD101 que usaremos neste exemplo e clique em Place & Close.

Exemplo 1 - Diodo

• Clique na posição que deseja colocar o diodo e ajuste o zoom clicando em Zoom Fit Page e depois reduzindo até o desejado.

Exemplo 1 - Diodo

UNICAMP

• Adicionaremos agora a fonte DC e o terra no projeto indo novamente em **Get New Part** e procurando por **GND_EARTH e VDC**.

Exemplo 1 - Diodo

• Devemos fazer agora a conexão dos componentes. Para isso, basta clicar em **Draw Wire**.

Exemplo 1 - Diodo

UNICAMP

• Para facilitar o entendimento da parametrização da análise, mude o nome da fonte de V1 para Vdiodo. Para isso, basta clicar duas vezes acima do nome V1 e mudar o nome na janela que irá aparecer.

Edit Reference Designation		
Package Reference Designator:	Vdiodo	
Gate:	•	
Package Type: (Footprint)	•	
OK	Cancel	

Exemplo 1 - Diodo

UNICAMP

- A fim de determinarmos o tipo de nossa análise, clique em **Analysis** no menu superior e selecione **Setup**.
- Na janela que foi aberta selecione DC Sweep e clique no botão correspondente a essa opção.

Analysis S	Setup			×
Enabled		Enabled		
	AC Sweep		Options	<u>C</u> lose
Γ	Load Bias Point		Parametric	
Г	<u>S</u> ave Bias Point		Se <u>n</u> sitivity	
◄	DC Sweep		T <u>e</u> mperature	
	Monte Carlo/Worst Case		Transfer <u>F</u> unction	
$\mathbf{\overline{v}}$	<u>B</u> ias Point Detail		<u>T</u> ransient	
	Digital Setup			

UNICAME

Exemplo 1 - Diodo

- Insira os seguintes parâmetros na janela:
- Sweep Var. Type: Selecione Voltage Source
- Name: Vdiodo (nome do componente em que essa variação será feita)
- Sweep Type: Linear
- Start Value: o (valor inicial de voltagem)
- End Value: 1.5
- Increment: **0.1** (irá variar a cada 0.1V)

Exemplo 1 - Diodo

• Ficando dessa forma configurado, clique em OK.

Swept Var. Type Name: Vdiodo • <u>Voltage Source</u> • <u>Linear</u> • <u>Dictave</u> • <u>Linear</u> • <u>Dictave</u> • <u>Voltage Parameter</u> Model Type: Model Type: • <u>Model Parameter</u> • <u>Global Parameter</u> • <u>Clinear</u> • <u>Dictave</u> • <u>Dictave</u> • <u>Value List</u> Model Type: Increment: 0.1 • Value List Values: UK Cancel	DC Sweep		×
C Iemperature Model Type: C Quirrent Source Model Name: C Global Parameter Model Name: Sweep Type Earam. Name: C Qctave End Value: Q Decade Increment: C Value Ligt Values:	Swept Var. Type Voltage Source	<u>N</u> ame:	Vdiodo
C Model Parameter C Global Parameter Sweep Type Baram. Name: C Linear C Decade C Value Ligt Value S OK C Cancel	C <u>T</u> emperature C <u>C</u> urrent Source	Model Type:	
Sweep Type Start Value: 0 Incernent: 0.1 0.1 Value Ligt Values: 0	 <u>M</u>odel Parameter <u>G</u>lobal Parameter 	Mod <u>e</u> l Name: <u>P</u> aram. Name:	
Nested Sweep OK Cancel	Sweep Type © Linear © Octave © Decade © Value Li <u>s</u> t	Sta <u>r</u> t Value: End V <u>a</u> lue: Increment: Val <u>u</u> es:	0 1.5 0.1
	Nested S <u>w</u> eep	OK	Cancel

Exemplo 1 - Diodo

• Finalmente, para iniciar a simulação aperte F11 ou vá em Analysis e escolha Simulate. Após isso a seguinte janela irá aparecer. Esta plataforma irá mostrar os resultados do seu projeto.

Exemplo 1 - Diodo

UNICAMP

 Na janela que irá aparecer, você deve informar quais parâmetros serão "plotados" no gráfico. Como analisaremos a variação da corrente no diodo com relação a tensão. Por isso, clicaremos em I(D1) e em

OK.

Exemplo 1 - Diodo

- Pode-se também fazer uma análise da variação da corrente do diodo com a temperatura.
- Nesse próximo teste veremos a variação da corrente no diodo com a mudança de temperatura e consequentemente como fazer uma simulação variando dois parâmetros: voltagem e temperatura.

Exemplo 1 - Diodo

• Aparecerá então a curva característica do diodo, mostrando que esse diodo específico começa a conduzir com aproximadamente 0,6V.

Exemplo 1 - Diodo

UNICAMP

 Vá em Analysis, clique em Setup – DC Sweep e mude a variação de voltagem para: o até 1 e com um increment de o.o1.

C Sweep Swept Var. Type	
Voltage Source Iemperature Current Source Model Parameter	Nodel Type: Model Name:
C <u>G</u> lobal Parameter	Param. Name:
Sweep Type © Linear © Octave © Decade © Value Ligt	Stagt Value: 0 End Value: 1 Increment: 0.01 Values:
Nested S <u>w</u> eep	OK Cancel

Exemplo 1 - Diodo

UNICAMP

• Clique em Nested Sweep, que será um 'sweep auxiliar', selecione Temperature e varie de o a 100 com incremento de 20, marcando o Enable.

Exemplo 2 - Transistor

UNICAMP

- Neste exemplo iremos caracterizar um transistor nMOS. Existe diversos tipos de transistores no Spice, no nosso caso utilizaremos o **MbreakN**.
- Para verem detalhes de outros tipos de transistores, vejam a **página 5 do Tutorial PSIPE** na seção de Downloads da página da disciplina.

Exemplo 1 - Diodo

 Simulando e "plotando" o gráfico da corrente I(D1), mesmo a mudança da tensão de condução do diodo com a variação da temperatura.

Exemplo 2 - Transistor

• Monte o circuito da seguinte forma, renomeando as fontes DC para facilitar o entendimento do mesmo:

Exemplo 2 - Transistor

UNICAMP

• Varie o Vds de o à 10 a cada o.o1. No Nested Sweep varie Vgs de o à 7 a cada 1.

OC Sweep		×	DC Nested Sweep		×
Swept Var. Type Voltage Source	Name: Vo	ls	Swept Var. Type	Name:	Vgs
C Temperature C Current Source C Model Parameter	Model Type: Model Name:		C Temperature C Current Source C Model Paramete	Model Type: Model Name:	
C Global Parameter	Param. Name:		C Global Parameter	Param. Name:	
Sweep Type Linear Octave	Start Value: 0 End Value: 10		 C Linear C Octave C Decad 	Start Value: End Value: Increment:	7 1
○ Decade ○ Value List	Increment: 0.1 Values:	D1	C Value List	Values:	ed Sween
Nested Sweep	ОК	Cancel	ОК	Cancel	a oneop

Exemplo 2 - Transistor

- Simule o circuito, vá em Add Trace, clique em ID(M1) (corrente no dreno do dispositivo M1) e em OK.
- Fazendo isso, você irá "plotar" o gráfico de **Id x Vds** para diferentes valores de **Vgs.**

